
Protocol buffers have multiple encodings for the same data, and allow surplus information to be added
to the data blob. In fact, it is very general. The generality, though good (and sometimes required) for
many uses cases works against security, in that it makes readers more complex, and error-prone.

For usage in Hedera precompiled contract ABIs, protobufs are a useful mechanism to encode rich
blobs of data. But we don't want the security exposure of using the unrestricted protobuf serialization
semantics. So we limit allowable protobuf schemas/encoding as follows:

(These are wire-format restrictions, but in the following may be expressed in terms of the protobuf
language.)

1. All protobufs MUST BE encoded using the Protocol Buffers Version 3 Language Specification as
further described in the Language Guide (proto3) and Encoding

2. Statement restrictions
All imported proto definitions must obey these restrictions.
service statement not supported.

3. Naming restrictions
The package name MUST match the grammar rule "hedera." ident

This might be unnecessary as I think the package name is strictly compile-time, doesn't
go on the wire (except in grpc).

4. Type restrictions
Field type MUST NOT be float (double allowed).
Field type MUST NOT be sint32 or sint64 (the "more inefficient" encoding for negative
numbers int32 and int64 types are available).
Field type MUST NOT be any of the "fixed" types (fixed32 , fixed64 , sfixed32 ,
sfixed64)

TBD: alternative to prior two rules: Only allow the 4 fixed types and disallow all the variable
length integer encodings. But this doesn't work because enum values must use varint
encoding, per the spec.
string MUST NOT be longer than TBD bytes.

(Some fixed number <2e6 bytes, or some lower limit?)
n.b.: Maximum string length given in UTF-8 encoded bytes, not code points.

bytes MUST NOT be longer than TBD bytes.
(Some fixed number <2e6 bytes, or some lower limit?)

double value MUST NOT be a NaN, -0.0, or ±∞.
5. Message restrictions

Field numbers MUST be <2000000 (2e6) (will fit in 3byte varint).
TBD: Or perhaps some lower limit, but probably needs to exceed 16K and therefore
need more than two bytes.

6. Encoding restrictions
Unknown fields (fields not defined in the relevant HIP) MUST NOT be present.

https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/encoding

Unknown fields are not ignored or retained: They cause the protobuf to be invalid and
processing to fail.

Duplicate entries MUST NOT be present: the "last one wins" rule is NOT allowed.
Fields MUST NOT be repeated (unless it is defined as a repeated field in the relevant
HIP),
Map keys MUST NOT be repeated in a map.

Fields MUST be encoded in order of their field number, increasing.
Maps MUST be encoded in order of their keys; if numeric, increasing, otherwise (string)
lexicographically increasing
Map keys, if string, MUST match the grammar rule fullIdent

fullIdent = ident { "." ident }; ident = letter { letter | decimalDigit

| "_" }

MapFieldEntry messages (the kv part of a map) MUST have a key_type field.
Thus, do not use the default value of a type for a map key.

TBD: Disallowing an empty string is ok, but is disallowing 0 for a numeric key ok?
Maps MUST have a value for each key.

This may just be an issue for serialization, not for the wire format.
Repeated primitive numeric fields MUST use packed encoding.

And there MUST only be one key-value pair for a packed repeated field
The wire encoding allows more than one, which are concatenated, but we disallow it.

They claim: "Protocol buffer parsers must be able to parse repeated fields that were
compiled as packed as if they were not packed, and vice versa. This permits adding
[packed=true] to existing fields in a forward- and backward-compatible way." Regardless,
we disallow it as we always pack repeated primitive numeric fields.

Enum values MUST be restricted to those defined in the relevant HIP.

